摘要
为揭示磨损故障对于齿轮传动系统非线性动态特性的影响,利用Archard和Weber-Banaschek公式分别计算了齿面动态累积磨损量和磨损齿轮对的时变啮合刚度.建立含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动系统平移-扭转耦合动力学方程.采用变步长Gill积分方法对动力学模型进行了数值仿真分析,以系统的激励频率为分岔参数,计算系统的对应的分岔图;引入GRAM-SCHMIDT方法对系统的Jacobi矩阵进行正交化处理,计算系统的李雅普诺夫指数谱,同时结合Poincaré映射图和功率谱验证了李雅普诺夫指数谱和分岔图计算结果的正确性.通过研究发现了系统内部存在的丰富非线性现象,包括倍周期分岔途径、阵发性途径和多种拟周期通过锁相进入混沌的现象;在系统经由拟周期进入混沌的过程中发现了交替出现的拟周期与锁相现象以及拟周期运动时功率谱分量存在的Farey序列现象.研究结果表明含有磨损故障的齿轮传动系统具有非常复杂的动力学特性,而系统由周期运动进入混沌运动的途径也是丰富多样的.
- 单位