摘要
探索地铁乘客出行目的识别方法,有助于突破智能卡数据(Smart Card Data,SCD)在具体应用场景中的局限性,提升SCD在交通出行研究、交通发展规划等领域的应用价值。本文融合多源地理大数据,基于城市交通与土地利用时空间互动理论,以北京市居民地铁出行为例,在交通出行调查数据中提取5565个地铁出行样本及其对应的出行目的和出行特征相关变量。基于兴趣点(Point of Interest,POI)数据得到各样本起止站点的土地利用特征相关变量,形成包含每次地铁出行的出行目的、出行特征、土地利用特征的地铁出行数据集。使用基于随机森林(Random Forest,RF)算法对地铁出行数据集进行训练完成的分类器对SCD记录的每一次地铁出行进行分类,获得该次出行的出行目的及其不同目的地铁出行时空间分布规律。研究结果表明,本识别方法可有效预测地铁乘客的出行目的,其中,"上班"、"回家"2类出行目的的预测准确率均超过90%;纳入土地利用特征相关变量可显著提升RF分类器预测准确率,印证了城市交通与土地利用的时空间互动理论。鉴于当前SCD的可获取性逐渐提高,该项技术在居民地铁出行监测与预测、地铁线网布局和地铁周边土地利用规划等实践方面,具有很强的推广性,有助于更全面地认知大城市居民的地铁出行行为。
- 单位