摘要
针对存在动力学不确定建模项、建模误差及外界干扰的移动机器人,设计RBF神经网络补偿计算力矩控制算法。基于反步法设计运动学辅助速度控制率。根据动力学理想名义模型,基于计算力矩法设计一般的力矩控制器。在此基础上,建立具有不确定建模项、建模误差及外界干扰的移动机器人动力学模型,基于计算力矩法设计带有RBF神经网络补偿的力矩控制器,神经网络的权值由自适应律给出。最后,利用Lyapunov理论证明了系统的稳定性。仿真结果表明:神经网络对系统不确定项具有良好的逼近性能,相比于一般的计算力矩控制,所提出的神经网络补偿计算力矩控制算法具有更好的跟踪性能,控制系统具有更好的鲁棒性。
-
单位四川轻化工大学