摘要
针对锂离子电池健康状态(SOH)估算精度低的问题,提出一种基于主成分分析(PCA)与改进LM算法-双高斯核RBF(ILM-DGRBF)神经网络的方法,实现了SOH的准确估算。首先,提取与锂离子电池容量衰退高度相关的健康因子(HI),采用PCA方法进行降维处理,减少HI之间冗余度。其次,创建双高斯核RBF神经网络,利用改进LM算法实现网络参数在线学习,建立ILM-DGRBF神经网络。再次,利用数据增强的电池测试数据训练ILM-DGRBF实现SOH估算。验证表明,经PCA降维得到的主成分1能够有效地反应锂离子电池的老化趋势,可用于SOH的估算;与其他模型相比,所建ILM-DGRBF模型具有更高的估算精度和更好的鲁棒性,估算结果的误差控制在1.5%以内。最后,基于该方法构建一种新的SOH智能估算系统,为电池安全管理提供参考依据。
-
单位自动化学院; 河南理工大学