摘要
传统卷积神经网络对于特征不明显或歧义性大的图像识别率较低。针对该问题,在卷积神经网络的基础上通过增加局部特征提取层和概率权重综合层,构建基于局部特征的卷积神经网络模型。该模型对输入图像的局部进行识别,得到局部图像的分类概率信息,综合分析所有局部图像的分类概率信息得到最终网络输出。手写字符识别实验结果表明,与经典的卷积神经网络模型相比,该模型识别率较高,尤其是在输入图像特征较为模糊的情况下优势更为明显。
-
单位解放军理工大学