摘要
诊断脑肿瘤时,如果能从多种模态的核磁共振成像(MRI)图像中精准分割出脑肿瘤区域,将有助于医生快速和准确的诊断。针对分割脑肿瘤时出现的边界分割不精准问题,该文提出了一种基于U-Net改进模型的脑肿瘤分割方法。该方法将U-Net每级编码器的特征图保留,来捕获分割目标的边界细节信息,进而对保留的特征图采用自注意力模块计算通道级别注意力,加强分割目标的边界空间信息提取,最后使用尺度融合模块统一特征图的尺度和通道数,来融合分割目标的边界信息,作为解码器的输入,从而提高分割性能。该方法在BRATS2017数据集上进行训练和测试,在Dice、SE、SP三个评估指标的参考下,通过消融实验证明了融合多尺度模块和自注意力机制的有效性,并与U-Net、ResUNet、SGNet、RelayNet四种网络模型进行对比实验,表明由于融合了分割目标边界的细节和空间信息,该模型得到的分割区域更加接近真实脑肿瘤区域。
- 单位