摘要

目的 为丰富儿科肺炎辅助诊断算法,提高医生分析儿科肺炎X线影像图片的效率和质量,提出一种改进的卷积神经网络模型。方法 基于深度残差网络(ResNeXt-50),融合SE模块建立通道之间的关联,然后在模型构建过程中使用Leaky Re LU激活函数替代ReLU激活函数,并使用组归一化作为归一化方法,最后将预训练好的模型在Chest X-Ray数据集上进行训练测试,并以准确率(Accuracy)、召回率(Recall)以及精确率(Precision)作为评价指标。结果 网络模型的识别准确率、精确率和召回率分别达到了91.19%、89.70%和91.39%。结论 网络模型具有一定的实用性,能够更好地拟合肺炎图像数据集,能有效提升儿科肺炎图像分类的准确性,可作为临床上儿科肺炎的辅助诊断新方法。