摘要

对苗期青菜及其伴生杂草进行识别试验,提出了一种基于识别蔬菜进而间接识别杂草的独特方法,该方法结合深度学习和图像处理技术,可以有效降低杂草识别的复杂度,同时提高识别的精度和鲁棒性。首先,采用神经网络模型对青菜进行识别,并标记边框;然后,将青菜边框之外的绿色目标视为杂草,利用颜色特征将其分割,并通过面积滤波得到滤除噪点后的杂草区域;为探究不同深度学习模型对青菜识别的效果,选取SSD模型、RetinaNet模型和FCOS模型,以F1值、平均精度和检测速度3个评价指标进行对比分析。结果表明,SSD模型为青菜识别最优模型,拥有最高的检测速度和较优的识别率,其在测试集的F1值、平均精度和检测速度分别为95.4%、98.1%和31.0 f/s;改进后的MExG因子能有效识别杂草,分割后的杂草形态完整且轮廓清晰。本文提出的蔬菜田杂草识别方法具有高度的可行性和极佳的应用效果,可为相似作物田杂草识别提供技术参考。