摘要
针对轮胎载荷直接测量昂贵复杂及传统载荷识别方法精度低、鲁棒性差的现实,提出了一种融合一维卷积神经网络(1D CNN)和双向门控循环单元(BiGRU)的胶轮车辆轮胎径向载荷识别方法。充分考虑轮胎径向载荷数据的先验信息,以车辆振动响应、车体位姿、运行状态等多源信息构建特征集并经特征选择保留有效的特征子集,构造多时间步输入-单时间步输出的样本用以网络训练。运用1D CNN提取信号的多维度空间特征并输入BiGRU中双向捕获时序特征,得到载荷预测的结果,结合预测精度、泛化性能、鲁棒性能修正理论模型。以APM300型车辆为例进行载荷识别,与传统算法相比,所提方法有效降低了载荷识别的误差,适用于不同运行工况,且能克服不同程度的测量噪声,在工程领域有现实应用价值。
- 单位