摘要
针对变工况条件下样本分布差异较大、不同寿命阶段样本数量不均衡导致现有空间滚动轴承寿命阶段识别方法的寿命阶段识别精度较低问题,提出基于双尺度柔性原型迁移网络(Dual scale flexible prototype transfer network, DSFPTN)的空间滚动轴承寿命阶段识别方法。在所提出的DSFPTN中,构造双尺度柔性域感知模块并将其嵌入特征提取器来增强特征提取器对不同领域私有特征的探索能力,提高特征提取器对空间滚动轴承源域和目标域样本特征的学习能力;设计同域泛原型学习以防止跨域样本不加区分的特征学习和不正确聚类,增加两域异类样本的区分性;构建两域原型迁移机制来获得域不变原型,实现从源域原型到目标域原型的迁移;利用加载域不变原型后的双分类器对齐两域之间的分布并计算目标域待测样本与域不变原型之间相似度完成对空间滚动轴承目标域待测样本分类,该分类方式在不同寿命阶段样本数量不均衡条件下能提高对各寿命阶段样本的识别精度。地面模拟空间环境下空间滚动轴承寿命阶段识别实例验证所提出的基于DSFPTN的寿命阶段识别方法的有效性。总之,构建双尺度柔性域感知模块、同域泛原型、两域原型迁移机制和加载域不变原型的双分类器使得DSFPTN在样本分布差异较大以及不同寿命阶段样本数量不均衡条件下,仅利用空间滚动轴承源域的非均衡有标签样本就能对目标域待测样本进行较高精度的寿命阶段识别。
- 单位