摘要

本文提出一种Alexnet与极限学习机相结合的网络模型。Alexnet是一种很好的特征提取器,但是大量的网络参数集中在后三层用作分类的全连接层中,同时要在调整和训练参数上花费大量时间,而极限学习机具有训练参数少,学习速度快的优点,所以本文运用Alexnet进行特征提取,再用极限学习机对图片进行分类,结合了Alexnet和ELM的优点。本文方法能在CIFAR10数据集上有效分类,同时节省训练时间。