摘要

高光谱影像具有丰富的波谱和纹理信息,机载LiDAR点云数据包含了地物高密度、高精度的三维信息。分别从两种数据中提取地物的光谱特征、纹理特征和高度特征,并进行不同的特征组合,然后采用随机森林分类器进行地物分类实验。结果表明,机载LiDAR点云和高光谱数据在地物分类方面具有很强的信息互补性;融合了LiDAR高度特征的总体分类精度和Kappa系数均优于仅使用高光谱影像,其中“PCA+NDVI+GLCM+CHM”的特征组合总体分类精度和Kappa系数最高,分别为85.96%和0.81;与未加入LiDAR特征的组合相比,总体分类精度提高了5.33%。