摘要

在所有的软件系统开发过程中,Bug的存在是不可避免的问题.对于软件系统的开发者来说,修复Bug最有利的工具就是Bug报告.但是人工识别Bug报告会给开发人员带来新的负担,因此,自动对Bug报告进行分类是一项很有必要的工作.基于此,提出用基于极速学习机的方法来对Bug报告进行分类.具体而言,主要解决Bug报告自动分类的3个问题:第1个是Bug报告数据集里不同类别的样本数量不平衡问题;第2个是Bug报告数据集里被标注的样本不充足问题;第3个是Bug报告数据集总体样本量不充足问题.为了解决这3个问题,分别引入了基于代价的有监督分类方法、基于模糊度的半监督学习方法以及样本迁移方法.通过在多个Bug报告数据集上进行实验,验证了这些方法的可行性和有效性.

全文