人工智能肾脏病理分析系统在膜性肾病中的应用

作者:梁冬梅; 雷群娟; 刘许蒙; 徐峰; 梁少姗; 梁丹丹; 杨帆; 曾彩虹*
来源:肾脏病与透析肾移植杂志, 2023, 32(03): 201-206.

摘要

目的:探讨基于人工智能技术构建的肾脏病理分析系统(ARPS)在原发性膜性肾病(PMN)中的应用。方法:纳入2018年1月至2019年12月于国家肾脏疾病临床医学研究中心经肾活检诊断为PMN的患者。评估ARPS对肾小球病变类型[球性硬化(GS);节段硬化(SS);非上述病变肾小球(NOA)]及三种固有细胞(系膜细胞、内皮细胞、足细胞)的识别效果,并分析基于ARPS的肾小球特征与预后的关系。结果:共纳入123例PMN患者,男性80例、女性43例,平均年龄47.1±14.0岁。ARPS对NOA、GS和SS识别F1分数分别为0.967、0.811和0.545,肾小球三种固有细胞的F1分数均>0.950。尿蛋白未缓解患者肾小球面积大于缓解患者,足细胞平均数、密度和比值均低于缓解患者。足细胞平均数和密度较高的患者肾脏缓解率高于足细胞平均数和密度较低的患者。多因素分析提示肾组织磷脂酶A2受体(PLA2R)阳性和足细胞平均数是尿蛋白缓解的独立预测因子。结论:ARPS对PMN患者肾小球病变和固有细胞类型识别效果较好,基于ARPS的肾小球特征与患者预后存在明显相关性。