摘要

对称交替方向乘子法(简称S-ADMM算法)是求解可分离凸优化问题的一种有效方法。该算法利用目标函数的可分离性,将原问题分解成多个极小化子问题,然后交替求解。能否有效地求解子问题对算法的有效性有重要影响。在很多实际应用中,不能精确地求解子问题,或者精确求解子问题花费代价较大。为解决这一问题,提出了一种改进的对称交替方向乘子法(简称MSADMM算法)。与一般的S-ADMM算法相比,该算法在x子问题中引入一个半近邻项,近似地求解x子问题,克服了之前算法的不足。在适当的假设下,证明了其收敛性。最后,通过数值计算说明了该算法的有效性。