摘要
准确预测光伏系统的输出功率对微网系统的优化调度具有重要意义。为了减小光伏系统输出功率短期预测误差,文中采用多层感知器(Multi Layer Perceptron, MLP)神经网络作为主要的预测载体,将光照强度、温度、风速数据作为MLP的输入,光伏系统的输出功率作为MLP的输出,采用光伏电站的历史数据对MLP进行训练,并针对MLP在初始化权重和偏置量中存在的随机性问题,提出运用改进灰狼算法(Grey Wolf Optimizer, GWO)对MLP的初始权重和偏置量进行优化,减小MLP随机初始化的误差。仿真结果显示,文中提出的GWO-MLP在均方误差(Mean Square Error, MSE)、均方根误差(Root Mean Square Error, RMSE)、平均绝对误差(Mean Absolute Error, MAE)方面较MLP、Elman神经网络、支持向量机(Support Vector Machine, SVM)、极限学习机(Extreme Learning Machine, ELM)都有明显提高,表明所提方法可以准确预测光伏系统的输出功率。
- 单位