针对与车辆调度成本密切相关的运输量和车辆利用率,建立油耗费用和固定费用最小的车辆调度模型。根据车辆调度问题实时性和复杂性的要求,提出云模型理论与遗传算法相结合的云自适应遗传算法,利用云模型云滴的随机性和稳定倾向性改进标准遗传算法中固定设置交叉和变异概率的方式,克服了标准遗传算法搜索速度慢及易早熟的缺陷,设计基于最大保留机制的交叉和变异算子,提高了算法的收敛性和鲁棒性。最后,结合算例对模型和算法的有效性进行验证。