摘要
现有的基于专家经验的特定辐射源个体识别(Specific Emitter Identification,SEI)方法和基于深度学习的SEI方法,通常在单一类型辐射源畸变存在的场景下性能较好,然而在多种辐射源畸变同时存在的复杂场景下表现较差。为此,提出一种基于多域特征融合学习的辐射源个体识别算法,将原始接收辐射源信号转换为I/Q眼图、矢量图和Hilbert-VMD时频谱图等多域信号表示作为网络输入,并结合神经网络进行多域特征融合提取。实验结果表明,与现有的基于专家经验的SEI算法或其他单一信号表示输入的基于深度学习的SEI算法相比,该算法在符号信噪比10 dB下的识别增益约10%。
-
单位信息工程大学