摘要
为了在动态环境中快速地跟踪变化后的最优解集,提出一种基于聚类预测模型的动态多目标优化算法.通过对种群聚类,提高预测解集的分布性与广泛性,为分段预测做准备,然后利用历史信息对每个子类的中心点和形状进行预测,在环境变化后,预测产生的每个子类共同构成整个新的初始种群,有引导性地增加了种群的多样性,使算法能快速跟踪新的最优解集.在标准动态测试问题上进行算法测试,实验结果表明所提算法能快速地适应环境的动态变化,所获解集具有较好的收敛性和分布性.
- 单位
为了在动态环境中快速地跟踪变化后的最优解集,提出一种基于聚类预测模型的动态多目标优化算法.通过对种群聚类,提高预测解集的分布性与广泛性,为分段预测做准备,然后利用历史信息对每个子类的中心点和形状进行预测,在环境变化后,预测产生的每个子类共同构成整个新的初始种群,有引导性地增加了种群的多样性,使算法能快速跟踪新的最优解集.在标准动态测试问题上进行算法测试,实验结果表明所提算法能快速地适应环境的动态变化,所获解集具有较好的收敛性和分布性.