摘要

在工业生产中,主要利用自动点胶机对工业相机底座表面进行点胶,而实际生产中由于自动点胶机工艺水平的限制,胶水不可避免的破裂、胶水的宽度太厚或太细,胶水不足等现象也是屡见不鲜。生产中如果不能及时检测出此类不良产品,将会影响到产品部件之间的连接,进而影响到整个产品的质量。因此,在需要点胶以实现粘合效果的各种应用中,严格控制点胶的质量是非常重要的。传统的点胶质量检测主要依靠手动检测方法,具有工作量大,工作效率低,检测精度不足等缺点,不能满足胶水检测的工业生产需求。为了提高点胶缺陷检测的准确率以及检测的稳定性,在本文中,我们使用深度学习卷积神经网络对胶条进行缺陷检测。通过模型的比较,最终采用LeNet-5卷积神经网络,同时在此基础上进行了改进,使得算法的鲁棒性以及准确率有所提升。

  • 单位
    哈尔滨工业大学深圳研究生院; 自动化学院