摘要

传统模糊聚类算法在影像分割过程中仅考虑影像的光谱信息,所以对噪声比较敏感.对此,提出基于混合邻域约束项的改进模糊C均值聚类(MNCFCM)算法.首先,从隶属性及光谱属性两方面定义邻域像素关于中心像素的相似度;然后,利用线性加权的方式将从两方面定义的相似度进行融合,同时结合邻域像素到聚类中心的欧氏距离构造混合邻域约束项,并将其引入目标函数中,以平衡影像分割过程中的影像平滑及细节保留,实现对影像的更优分割;最后,通过对合成影像及真实遥感影像分割结果的定性、定量评价,验证所提出算法具有较强的鲁棒性,在降低对噪声的敏感性的同时,能够较好地保留影像细节,获得高精度的分割结果.

全文