摘要
YOLOv5具有较高的目标检测速度和检测精度,但在无人机影像小目标检测方面效果不太好。为解决在自然环境情况下小目标检测精度低及鲁棒性差等问题,本文以自然环境情况下无人机影像为研究对象,提出了一种改进的YOLOv5小目标检测模型。通过对特征图增加上采样处理,使特征图继续扩大,从而降低采样率和缩小感受野,提高模型对小目标的检测能力。改进的模型在天大无人机影像VisDrone数据集上进行了训练和测试。实验结果表明,改进YOLOv5的算法平均精度值为46.4%,与原YOLOv5模型相比,平均精度值提升了14.9%,改进YOLOv5在一定程度上改善了YOLOv5无人机影像识别率。
-
单位电子工程学院; 天津职业技术师范大学