摘要

转炉炼钢生产过程数据特征选择是实现终点碳温预报的关键,针对生产过程高维数据不利于快速精确预测终点碳温的问题,提出一种改进遗传算法的转炉炼钢生产过程数据特征选择方法。首先采用皮尔逊相关系数衡量不同特征的重要贡献度,进而构造反映过程数据特征与终点碳温相关性的目标函数;然后通过目标函数定义了种群的最大、最小、平均适应度和随机个体适应度值4个变量,建立了一种自适应调节交叉变异概率机制,使得迭代寻优时种群分布更加合理的同时又提高了算法后期收敛速度,防止陷入局部最优。最后进行实际钢厂生产过程数据特征选择验证和对比实验,结果表明,特征选择平均用时为0.25 s,用于终点预报中温度误差在±5℃的精度为85.67%,碳含量预测误差在±0.01%的精度为80.67%。