摘要

针对机场延误预测过程中难以提取延误传播时空特征、预测结果受天气扰动大的问题,提出了基于气象因素的时空图卷积网络(meteorology-based spatio-temporal graph convolutional networks, MSTGCN)机场延误预测模型。该模型使用图卷积神经网络(graph convolutional neural network, GCNN)与门控卷积神经网络(gated convolutional neural network, Gated CNN)挖掘机场延误的时空特征,同时加入气象特征提取模块对机场延误时间进行预测。实验结果表明,该模型在中短时预测上的表现均优于其他对比模型;相较于不考虑气象因素的模型,MSTGCN对未来1 h、4 h和12 h预测的平均绝对误差分别降低了7.03%,7.93%,11.54%,对预测结果起到了极大的修正作用。