摘要
特征选择是生物信息领域中数据预处理阶段必不可少的步骤。传统特征选择算法忽视了特征之间的依赖相关性和冗余性,因此提出一种联合互信息的特征选择算法(JFRR)。该算法利用互信息计算特征之间的冗余值,并利用联合互信息分别计算已选特征集合、候选特征及类标签之间的相关性。将JFRR与其他6个特征选择算法在2个分类器上,使用9个不同基因数据集,进行分类准确率指标(Precision_micro和F1_micro)验证。实验结果表明,该算法能有效提高分类精度。
-
单位江苏理工学院