摘要

为了准确判断水轮机组的故障,提高水轮机组诊断的精确性,建立了EMD-Multi-fractal spectrum和改进BP神经网络相结合的机组振动故障诊断模型.选取水轮发电机组不同工况下的轴系正常、轴承油膜涡动、转子部件不平衡、转子不对中等状态,采集各状态下的振动信号.经过经验模态分解得到振动信号波各种故障信号的EMD分量,根据信号波形趋势图由EMD系数提取出波形样本,再由多重分形谱算法提取波形样本的特征值alpha(q),f(q),将该特征向量作为BP神经网络的输入进行分类识别.将训练好的神经网络应用于全部样本,得到测试正确率为100%.该模型用波形提取信号特征代替了传统的频谱特性,并结合先进的多重分形谱进行诊断识别,为水轮发电机组故障诊断提供了一种新的思路.应用信号采集于水电厂运行的水轮机,根据诊断的结果对轴系各个部件进行局部校正,通过检测发现振动和摆度都大大减弱.该方法提高了检测精度,增强了人机交互性,具有重要的理论意义和实用价值.