摘要

为解决太赫兹(Terahertz, THz)图像内泊松高斯混合噪声导致芳纶纤维蜂窝材料脱粘缺陷轮廓检测精度低的问题,基于Anscombe变换与小波阈值法构建了THz图像降噪模型。高斯噪声方差为降噪模型的必要参数,但实际THz图像噪声分布未知,且噪声与纹理在高频混叠,给方差准确估计提出了挑战。为此,首先以样件纹理几何形状为先验信息,构造Benzene-ring算子去除THz图像纹理,使其小波域高频分量中仅含有噪声;然后提出改进的Logistic混沌映射提高样本集的多样性,以训练Elman神经网络准确建立高频分量与高斯噪声方差间映射关系;最后依据噪声方差估计值,基于Anscombe变换将泊松高斯混合噪声转化为高斯噪声,并利用小波阈值法与Anscombe逆变换得到了最终THz降噪图像。仿真与试验结果表明,所提出的方法降噪效果最佳并有效提高缺陷轮廓检测精度,相比于高斯滤波、小波阈值以及非局部均值法,平均梯度指标分别提升12%、33%、9%,缺陷面积绝对误差分别降低234 mm2、304 mm2、263 mm2。