针对不确定性参数对结构力学性能的随机影响,该文利用混合神经网络良好的小样本学习和泛化能力构建结构响应复杂的函数关系,采用改进的混沌粒子群算法优化网络寻址结构。结合蒙特卡洛法对结构进行随机性分析,并根据该文提出的新的灵敏度度量参数计算随机变量的全局灵敏度系数。通过数学算例和工程算例验证了所提方法的可行性,且结构响应的概率分布曲线也可以真实的反应实际情况。同时,利用该文所提出的随机灵敏度计算方法可以更好的反应各随机变量对结构响应的相关性和敏感性。