摘要
铣床齿轮箱的安全运行对保证机械设备的效率具有重要的作用,其故障诊断复杂难控。传统形式算法只是从原始振动信号中进行字典原子学习,并未从本质层面分析特征信息物理结构特性。采用低秩稀疏分解算法,并进行BCD求解对齿轮箱故障诊断开展分析。研究结果表明:特征信号已淹没到了噪声中,能够对等间隔冲击特征进行准确识别,并使特征信号信噪比由-9.152增大为4.716。表明采用稀疏低秩算法能够滤除噪声干扰,从而高效识别瞬态冲击成分。经过3次迭代后特征信号发生了奇异值快速衰减现象,具有明显稀疏特性。低秩稀疏分解信号形成的包络谱,已经实现了所有干扰频率成分以及噪声成分的滤除效果,采用低秩稀疏分解算法能够实现齿轮箱局部故障的准确诊断。
-
单位河南理工大学; 黄河科技学院