摘要
为监测间接空冷散热器的换热性能,提出了监测间接空冷塔出水温度的方法。根据间接空冷系统散热器传热量计算和热平衡方程,分析了间接空冷塔出水温度的影响因素,建立了以环境温度、环境风速、大气压力、间接空冷塔循环水进水温度、循环水进水压力、出水压力和百叶窗开度7个主要参数为输入,出水温度为输出的BP神经网络模型。为避免该模型陷入局部最优,采用非线性动态惯性权重的粒子群优化(PSO)算法对BP神经网络模型的初始权值和阈值进行了优化,构建了PSO-BP神经网络预测模型,并根据某660MW间接空冷机组的运行数据对该模型进行了训练和验证。结果表明:采用PSO算法优化的BP神经网络模型具有较强泛化能力,预测精度高于单纯的BP神经网络模型,预测平均绝对百分比误差为0.55%。
- 单位