摘要

在海上防御中,准确识别目标物体具有重要的现实意义。为此,针对2种传统图像目标识别方法存在的精度问题,研究一种海上视频监控系统组合相似度图像智能识别方法。该方法主要分为3步骤,首先对海上监控系统采集到的图像进行预处理,包括图像灰度化、图像平滑去噪、图像增强、图像分割等,然后利用HOG特征提取算法对处理好的图像进行特征提取,最后通过距离公式计算目标特征与数据库中相似性评价标准之间的相似度,完成相似度匹配,实现目标识别。结果表明:与基于K-means聚类、CNN模型等2种传统图像目标识别方法相比,利用本方法编程的软件程序进行25000个海上目标识别,识别准确性分别提高8.1%和7%,提高了海上防御的安全性。

  • 单位
    电子工程学院; 商丘工学院