摘要

针对电力变压器故障难以准确诊断的问题,提出了一种基于改进粒子群算法(PSO)的模糊神经网络(FNN)诊断模型。该模型运用模糊神经网络,同时结合变压器故障与变压器油中各气体成分之间的密切关系,确定了神经网络输入变量,同时在标准粒子群算法中引入遗传变异因子对模型进行训练,提高了训练精度。MATAB软件测试结果表明,模型预测精度较高,可进一步研究应用。

  • 单位
    铜陵职业技术学院