摘要
深度伪造技术因“低门槛、高效率、高仿真”等特性而被滥用于伪造身份,引发的个人信息安全问题给公共安全治理带来了严峻挑战。目前深度伪造图像主流检测以卷积特征为主,量化特征应用较少,基于量化特征占用空间小,运行成本低等优点,探究图像各颜色分量上的纹理、颜色特征与图像真伪的关联程度,筛选有效特征进行深伪图像自动检测,研究量化特征在深伪图像鉴定方面的应用价值。对深度伪造人脸数据集ForgeryNet中的40 000幅实验样本图像进行分组实验,提取各组图像在Gray,YCrCb,Lab,HSV和RGB颜色空间上的纹理特征和颜色特征,利用多元统计法筛选既具有显著差异又具有相关性的特征,然后用XGBoost、逻辑回归分类器、线性SVM、多层感知机和TabNet进行算法验证,并与主流卷积神经网络进行对比分析。在5类算法中,XGBoost和LSVM分类效果较好;MLP和LP效果较差;TabNet效果不稳定,受分类类型影响较大,检测精度在52%~89%之间。数理统计筛选所得特征下的深伪图像检测精度显著提高,在真伪图像组,在真伪图像组,XGBoost算法在筛选特征和纹理特征时的检测精度比所有特征时分别提高1.10%和1.43%,LSVM和MLP两种算法在纹理特征时的检测精度比在所有特征时分别提高了0.12%和0.10%。利用颜色空间下筛选的量化特征,其检测精度均高于主流卷积神经网络的检测精度,且纹理特征的检测结果优于颜色特征,对身份替换深伪图像更易识别。相比图像卷积特征,量化特征具有较强的解释性,在鉴定领域具有较高的利用价值。
- 单位