摘要
针对带式输送机托辊轴承故障诊断中振动信号提取特征困难而导致故障诊断精度较低的难题,提出了一种基于一维卷积神经网络(1DCNN)和极限学习机(ELM)的托辊轴承故障诊断方法。首先,根据具体的故障诊断任务,对采集到的数据进行划分,并进行傅里叶变换,采用多个标签表示健康状态、故障类型和损伤程度。然后,利用1DCNN来提取故障特征,根据提取的故障特征利用ELM进行故障分类。该方法中的参数是随机产生的,不需要迭代更新,可有效加快计算速度。最后,通过Case Western Reserve University的轴承数据集以及自制托辊故障数据集进行故障诊断试验,测试精度均达到了100%,用时分别为2.82 s和2.42 s,能够在较短的时间内准确判断出托辊故障类型,验证了所提方法的有效性。通过与ELM、随机森林、K最邻近法、支持向量机和卷积神经网络等方法进行对比,体现了所提方法的优越性。结果表明:采用1DCNN和ELM相结合的诊断方法,其诊断效果比采用单一方法更好,能够满足煤矿领域托辊故障诊断的需求。
-
单位太原理工大学; 太原卫星发射中心