摘要

针对目前图像超分辨率重建算法在提取图像信息时过于单一地累加卷积层导致的深层网络梯度消失和图像信息丢失的问题,提出了一种基于多尺度与残差网络的图像超分辨率重建算法。该算法使用多尺度密集连接的卷积核代替单一累加的卷积核,充分提取输入低分辨率图像信息并实现通道特征维度的复用;利用残差网络,多层次地对丢失图像信息进行补充并对深层网络模型的梯度问题实现了抑制,在反向传播的过程中帮助全网络模型自适应地完成对权重更新;最后以非线性映射的方式输出最终重建图像。实验表明,所提算法在测试集上的峰值信噪比和结构相似性与对比算法相比均有所提升;在与目前主流算法对比中获得了细节信息更加丰富、边缘纹理更加清晰的重建图像。