摘要

基于Bayesian相似性评估方法结合偏最小二乘局部回归,对苹果近红外数据库进行数据挖掘。通过相似性计算方法搜索出与预测样品相近的近红外光谱,形成校正子集后采用局部回归方法获得待测样品的相关信息。该方法所建立局部模型的平均检验标准偏差(SEV)约为0.57,分析30个预测样品的预测标准偏差(SEP)约为0.61;基于马氏距离的传统方法建立的偏最小二乘局部模型的平均SEV为0.59,分析30个待测样品的预测SEP为0.64;而采用整个数据库建立的全局偏最小二乘模型的SEV约为0.65,分析30个预测样品SEP约为0.70。基于Bayesian相似性评估的局部回归方法在苹果糖度的近红外无损定量分析...