摘要

立木视差图是立木因子测量、三维重建的基础。结合立木图像特征,为解决自然环境下立木图像结构复杂、光照干扰大等因素导致获取高质量立木视差图困难的问题,提出一种基于改进的semi-global matching(SGM)算法的立木视差图生成方法。针对SGM算法在图像纹理较弱和光照不稳定时生成的视差图效果不佳的问题,提出改进Census变换,该变换将Census中心像素值用周围像素的中值替代,提高初始代价的可靠性;在代价聚合过程中使用均值漂移算法进行图像分割,使算法具有较强鲁棒性的同时还有效降低了对重复和弱纹理区域的误匹配率。最后,分别采用自适应窗口填充无效值、中值滤波剔除不可靠视差值,使视差不连续的区域也能获得准确的视差值。在Middlebury公共数据集上对所提方法进行验证,所提方法的平均误匹配率约为5.23%,较传统的semi-global block matching(SGBM)算法、BoyerMoore(BM)算法、SGM算法,分别提升9.47个百分点、9.345个百分点、8.96个百分点。自然环境下,所提改进的SGM算法可生成较高精确度的立木视差图。