摘要

常规的凝汽式汽轮机能耗预测方法主要采用瞬态/稳态并行分析法生成汽轮机能耗预测模型,该方法易受临界负荷的影响,导致热耗预测偏差较大过高。因此,本文提出基于卷积循环神经网络(CNN-RNN)组合模型的凝汽式汽轮机能耗预测研究,利用R检验法筛选并生成凝汽式汽轮机能耗特征参数工况库,结合CNN-RNN组合模型消除凝汽式汽轮机能耗预测偏差,从而完成凝汽式汽轮机能耗预测。结果表明,设计的基于凝汽式汽轮机能耗CNN-RNN组合模型的凝汽式汽轮机能耗预测方法的热耗预测偏差较小,证明该方法的预测效果较好,具备较高的准确性和一定的应用价值,为优化汽轮机的运行方案提供了一定贡献。