基于CEEMDAN- EFICA去噪的风电齿轮箱故障诊断

作者:杨保俊; 洪荣晶; 潘裕斌
来源:组合机床与自动化加工技术, 2020, (02): 115-122.
DOI:10.13462/j.cnki.mmtamt.2020.02.027

摘要

针对风电齿轮箱实验样本较少,以及振动信号具有非平稳、非线性的特点,提出了基于完备集合经验模态分解(CEEMDAN)-高效快速独立分量分析(EFICA)的去噪方法。首先应用CEEMDAN与峭度-相关系数准则完成信号重构,对重构信号和原信号进行EFICA分离来获得去噪信号;然后提取去噪信号的时域特征、频域特征构建特征向量,使用核主分量分析(KPCA)对向量降维处理实现特征信息融合;最后采用复合神经网络对信号特征集进行分类完成故障诊断。通过实验数据对比,证明了该方法消噪效果更好且复合神经网络的诊断准确率最高,所提方法具有可行性和优越性。