对于二维不可压缩粘性流,通过沿流线方向的坐标变换,推导了无对流项的二维N-S(Navier-Stokes)方程。采用四阶Runge-Kutta法对N-S方程进行时间离散,并沿流线进行Taylor展开,得到显式的时间离散格式,然后利用Galerkin法对其进行空间离散,得到了高精度的有限元算法。利用本文算法对方腔驱动流和圆柱绕流进行了数值计算,通过对时间步长、网格尺寸和流场区域的计算分析,进一步验证了本文算法相比经典CBS法在时间步长、收敛性、耗散性和计算精度方面更具有优势。