摘要
遥感场景分类作为一种理解遥感影像的重要方式,在目标检测、影像快速检索等方向有着重要的应用,当前主流的场景分类方法多关注影像深层次特征的准确提取,忽略了场景目标在不同分布尺度下的差异性。此外,有限的高质量场景标签进一步限制了模型分类性能。为了解决以上问题,本研究提出了基于多尺度对比学习的弱监督遥感场景分类方法,首先利用多尺度对比学习的自监督策略,从大量无标注数据中自动获取影像不同尺度下的特征表示。其次,基于多尺度稳健特征对分类模型利用少量标签进行微调,并结合标签传播方法生成高质量样本标签。最后,结合大量无标签数据构建弱监督分类模型,进一步提升场景分类的能力。本研究在遥感场景AID数据集和NWPU-RESISC45数据集上分别使用1%、5%和10%的标注样本下分类精度分别达到了87.7%、93.67%、95.56%和86.02%、93.15%和95.38%,在有限标注样本条件下与其他基准模型相比有着明显的优势,证明了本文模型的有效性。
-
单位北京师范大学; 遥感科学国家重点实验室