摘要

针对决策树C4.5算法处理小规模缺失数据以及二义性数据时不稳定、效率低,以及在分裂节点时条件属性之间关系的问题,提出了一种在决策树C4.5算法与朴素贝叶斯算法结合的基础上,引入Fleiss’Kappa系数的改进算法,从而解决了C4.5算法在处理小规模缺失数据、二义数据效率低以及条件属性之间相关性的问题。通过理论分析和在标准UCI数据集实验结果表明,该算法在牺牲一定执行效率的基础上,分类精度得到明显的提高。