摘要
随着我国经济的高速全面发展,人民生活水平的日益提高,我国对于交通运输方面的需求越来越大。为了满足列车安全运行的需求,本文提出铁路场景下基于单阶段实例分割的列车主动避障视觉算法,针对铁路场景中侵线情况下检测物体多重叠的特点对算法模型进行了优化,改进主干网络和多尺度融合方法提高了模型的精度,利用TensorRT半精度加速和CUDA重构对模型进行了加速,并对本文方法和其他方法进行性能评价与对比试验。最终,本文方法在嵌入式平台Xavier上实现了71.2MAP和108 ms的速度,实现了车载部署下列车前方环境的高效高精度检测。
-
单位株洲中车时代电气股份有限公司