摘要
Landsat系列陆地卫星受大量云和云阴影遮盖,干扰了地面信息的提取。因此,有效的云检测是遥感影像资源利用的前提。使用SE-GoogLeNet模型进行Landsat8遥感影像的云检测工作。SE-GoogLeNet模型有9个InceptionV3块,它起到了多尺度融合的作用,获取高级语义信息与低级空间信息相结合的特征,在每个InceptionV3后添加添加SeNet(压缩与激励)模块,通过自身的信息学习通道注意力权重,自动学习Landsat8遥感影像11个波段的相互依赖关系,每个波段的重要程度,然后按照这个重要程度提升有用特征,抑制无用的特征。通过实验可视化和评估指标的对比,SE-GoogLeNet模型云检测比GoogLeNet模型云检测准确率精度等均有提升。
-
单位三明学院