摘要

高精度的定位对于自动驾驶至关重要. 2D激光雷达作为一种高精度的传感器被广泛应用于各种室内定位系统.然而在室外环境下,大量动态目标的存在使得相邻点云的匹配变得尤为困难,且2D激光雷达的点云数据存在稀疏性的问题,导致2D激光雷达在室外环境下的定位精度极低甚至无法实现定位.为此,提出一种融合双目视觉和2D激光雷达的室外定位算法.首先,利用双目视觉作为里程计提供相对位姿,将一个局部时间窗口内多个时刻得到的2D激光雷达数据融合成一个局部子图;然后,采用DS证据理论融合局部子图中的时态信息,以消除动态目标带来的噪声;最后,利用基于ICA的图像匹配方法将局部子图与预先构建的全局先验地图进行匹配,消除里程计的累积误差,实现高精度定位.在KITTI数据集上的实验结果表明,仅利用低成本的双目相机和2D激光雷达便可实现较高精度的定位,所提出算法的定位精度相比于ORB-SLAM2里程计最高可提升37.9%.

全文