摘要

当前道岔故障诊断系统大多采用BP神经网络,但由于BP神经网络结构特点,在训练样本大且诊断系统精度要求比较高时,网络常常会呈现出以下不足:不收敛且容易陷入局部最优、常用的数据挖掘方法如小波分析等对数据的利用度不高、从时域或频域角度分析时不够全面和采用数据降维使用的LLE方法会丢失部分有用数据等。采用GMM聚类方法对兰州车站微机监测系统中采集的600组功率数据进行分类后,根据结果选取信息量比较全面的数据建立概率神经网路的训练集和测试集,从测试集得出的仿真图和BP神经网络做比较,结果表明基于GMM聚类和概率神经网络的道岔故障诊断方法可以改善存在的不收敛、误差大等问题。

全文