摘要
为快速识别服装款式类型,提高生产效率,针对现有传统边缘检测算法难以准确提取轮廓特征序列的不足,设计一种改进的边缘提取算法。通过定义一种新的优化卷积核,在使用传统边缘检测算法提取训练样本的服装轮廓基础上,将该卷积核与目标矩阵进行卷积得到新的外轮廓,将新轮廓序列的傅里叶描述子作为特征向量,进一步利用BP神经网络模型完成服装款式的自动分类与识别。为验证改进方法的有效性,建立一个包含4类服装500个不重复服装图像的样本库,选取281个作为训练样本,对剩余219个样本进行测试,测试识别准确率最低为93.48%,最高达到了100%。该改进算法提高了服装款式识别率,对服装智能化生产具有借鉴意义。
-
单位中原工学院; 自动化学院; 河南工学院