摘要
针对茶叶病害检测面临的病害尺度多变、病害密集与遮挡等诸多问题,提出了一种多尺度自注意力茶叶病害检测方法(Multi-scale guided self-attention network, MSGSN)。该方法首先采用基于VGG16的多尺度特征提取模块,以获取茶叶病害图像在不同尺度下的局部细节特征,例如纹理和边缘等,从而有效表达多尺度的局部特征。其次,通过自注意力模块捕获茶叶图像中像素之间的全局依赖关系,实现病害图像全局信息与局部特征之间的有效交互。最后,采用通道注意力机制对多尺度特征进行加权融合,提升了模型对病害多尺度特征的表征能力,使其更加关注关键特征,从而提高了病害检测的准确性。实验结果表明,融合多尺度自注意力的茶叶病害检测方法在背景复杂、病害尺度多变等场景下具有更好的检测效果,平均精度均值达到92.15%。该方法可为茶叶病害的智能诊断提供参考依据。
- 单位