摘要

为了更准确和高效地检测针对铁路信息系统的高级持续性威胁(APT,Advanced Persistent Threat)攻击,研究并设计了基于堆叠式长短期记忆(LSTM,Long Short-Term Memory)模型的APT恶意流量预警系统。将UNSW-NB15数据集改造为适用于APT恶意流量预警系统中模型训练的数据集;提出利用APT攻击阶段性的特性进行预警结果再计算的方法,引入置信度的概念,从而更准确地判定流量类型。在Kaggle云平台上对APT恶意流量预警系统进行了实验,其准确率、精确率和召回率等指标均优于其他方法。实验结果表明,所设计的系统具有更好的性能表现,能够有效提高APT恶意流量预警的准确率,降低误报率和漏报率。

  • 单位
    中国铁道科学研究院集团有限公司