基于稀疏表示理论的目标跟踪方法可以通过激活少量神经元完成目标的动态跟踪,但是要求在当前图像背景中的遮挡或者目标物的姿态变化是可以进行稀疏表示的小面积范围.针对这一问题,基于Gabor函数和稀疏理论提出一种强鲁棒性的目标跟踪算法.该算法首先使用目标模板在初始帧中创建Gabor字典,其次使用该字典对候选目标完成稀疏表示,最后通过对Gabor字典的更新完成目标跟踪.实验结果表明了算法的有效性.